KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A. 700. A positive integer \(\displaystyle n\) satisfies the following: it is possible to select some integers such that if we randomly choose two different integers from this list, say, \(\displaystyle i\) and \(\displaystyle j\), then \(\displaystyle i+j\) \(\displaystyle \mathrm{mod\ } n\) is equal to one of the numbers \(\displaystyle 0,1,\dots,n-1\) with equal probability. Find all numbers \(\displaystyle n\) with this property.

(5 points)

Deadline expired on 12 June 2017.


Statistics on problem A. 700.
7 students sent a solution.
5 points:Baran Zsuzsanna, Gáspár Attila, Matolcsi Dávid, Williams Kada.
4 points:Szabó Kristóf.
0 point:2 students.


  • Problems in Mathematics of KöMaL, May 2017

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley