KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 3832. P is an arbitrary point of the hypotenuse AB of a right-angled triangle ABC. The foot of the altitude drawn from vertex C is C1. The projection of P onto the leg AC is A1, and its projection onto the leg BC is B1.

a) Prove that the points P, A1, C, B1, C1 lie on a circle.

b) Prove that the triangles A1B1C1 and ABC are similar.

(3 points)

Deadline expired on 17 October 2005.


Solution. (a) The angles \anglePA1C, \anglePB1C, \anglePC1C are all right angles, so points A1, B1, C1 lie on the circle of diameter PC. Due to the right angle at C, another diameter of this circle is A1B1.

(b) From the triangles ABC and CBC1, \angleBAC\angle=90o-angleABC=\angleBCC1. Since quadrilateral CA1C1B1 is cyclic, B1CC1\angle=B1A1C1\angle. Therefore, the red angles in the Figure are equal.

Similarly, also the blue angles are equal.

Triangles ABC and A1B1C1 are similar because they have equal angles, respectively.


Statistics on problem B. 3832.
384 students sent a solution.
3 points:205 students.
2 points:64 students.
1 point:98 students.
0 point:14 students.
Unfair, not evaluated:3 solutions.


  • Problems in Mathematics of KöMaL, September 2005

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley