KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem B. 3832. (September 2005)

B. 3832. P is an arbitrary point of the hypotenuse AB of a right-angled triangle ABC. The foot of the altitude drawn from vertex C is C1. The projection of P onto the leg AC is A1, and its projection onto the leg BC is B1.

a) Prove that the points P, A1, C, B1, C1 lie on a circle.

b) Prove that the triangles A1B1C1 and ABC are similar.

(3 pont)

Deadline expired on 17 October 2005.


Solution. (a) The angles \anglePA1C, \anglePB1C, \anglePC1C are all right angles, so points A1, B1, C1 lie on the circle of diameter PC. Due to the right angle at C, another diameter of this circle is A1B1.

(b) From the triangles ABC and CBC1, \angleBAC\angle=90o-angleABC=\angleBCC1. Since quadrilateral CA1C1B1 is cyclic, B1CC1\angle=B1A1C1\angle. Therefore, the red angles in the Figure are equal.

Similarly, also the blue angles are equal.

Triangles ABC and A1B1C1 are similar because they have equal angles, respectively.


Statistics:

384 students sent a solution.
3 points:205 students.
2 points:64 students.
1 point:98 students.
0 point:14 students.
Unfair, not evaluated:3 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley