KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 3844. The legs of a right-angled triangle are a and b, its hypotenuse is c. The radius of the escribed circle drawn to the leg b (i.e. the one touching that leg on the outside and also touching the extensions of the other two sides) is \varrhob. Prove that b+c=a+2\varrhob.

(3 points)

Deadline expired on 15 November 2005.


Google Translation (Sorry, the solution is published in Hungarian only.)

Az ábra jelöléseivel élve OX=OY=OZ=\varrhoa. Az OXCY négyszögnek három szöge is derékszög, ezért az négyzet, vagyis CX=CY=\varrhoa. Az egybevágó OXB és OZB derékszögű háromszögekben BZ=BX=a-\varrhoa. AY=AZ miatt

2AY=AY+AZ=(b+\varrhoa)+(c+a-\varrhoa)=a+b+c,

ahonnan 2(b+\varrhoa)=a+b+c, vagyis b+2\varrhoa=a+c.


Statistics on problem B. 3844.
313 students sent a solution.
3 points:211 students.
2 points:83 students.
1 point:10 students.
0 point:7 students.
Unfair, not evaluated:2 solutions.


  • Problems in Mathematics of KöMaL, October 2005

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley