KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem B. 3893. (March 2006)

B. 3893. Solve the equation

(x2+y2)3=(x3-y3)2

on the set of real numbers.

(3 pont)

Deadline expired on 18 April 2006.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás: A zárójeleket kibontva, rendezés után a 3x4y2+3x2y4+2x3y3=0 egyenletre jutunk, vagyis

x^2y^2\bigl(2x^2+2y^2+(x+y)^2\bigr)=0.

Ez pedig pontosan akkor teljesül, ha x és y közül legalább az egyik 0.


Statistics:

204 students sent a solution.
3 points:154 students.
2 points:19 students.
1 point:28 students.
0 point:2 students.
Unfair, not evaluated:1 solution.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley