KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

MBUTTONS

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 3894. The lines of the legs AB and CD of a trapezium ABCD intersect at the point M. A line e passing through M intersects the line AD at a point E different from A and D, and it intersects the line BC at F. The intersection of the diagonals is constructed in each of the trapezia ABFE and CDEF, denote them by P and Q. Show that PQ is parallel to the bases of the trapezia.

(3 points)

Deadline expired on 18 April 2006.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Az APE és FPB háromszögek hasonlóak, a hasonlóság aránya pedig AE/BF, ilyen arányban viszonyul egymáshoz a két háromszög egymásnak megfelelő magasságainak hossza is. A P pontnak az AD és BC egyenesektől vett távolságainak aránya tehát AE:BF. Hasonló okok miatt a Q pontnak az AD és BC egyenesektől vett távolságainak aránya DE:CF. Az MAE és MBF, illetve az MDE és MCF háromszögek hasonlósága miatt azonban AE:BF=ME:MF=DE:CF, vagyis a P és Q pontok az AD és BC egyenesek között, az AD egyenestől ugyanakkora távolságra helyezkednek el, PQ tehát valóban párhuzamos az AD egyenessel.


Statistics on problem B. 3894.
134 students sent a solution.
3 points:130 students.
2 points:2 students.
1 point:1 student.
0 point:1 student.


  • Problems in Mathematics of KöMaL, March 2006

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley