KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 3904. ABC is an isosceles triangle. Drop a perpendicular from the midpoint D of the base BC onto the leg AC and denote the foot of the perpendicular by E. The midpoint of the line segment DE is F. Show that the lines BE and AF are perpendicular.

(4 points)

Deadline expired on 18 May 2006.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Állítsunk a B csúcsból is merőlegest az AC szár egyenesére, ennek talppontját jelölje G. Az ADE és BCG derékszögű háromszögek hasonlók. Mivel F a DE oldalnak, E pedig a neki megfelelő CG oldalnak felezőpontja, az ADF és BCE háromszögek is hasonlók egymáshoz. Mivel pedig a háromszögek azonos körüljárásúak is egyben, és az egymásnak megfelelő AD, BC oldalak egymásra merőlegesek, ugyanez igaz az ugyancsak egymásnak megfelelő AF és BE oldalakra.


Statistics on problem B. 3904.
89 students sent a solution.
4 points:80 students.
3 points:5 students.
2 points:1 student.
1 point:2 students.
0 point:1 student.


  • Problems in Mathematics of KöMaL, April 2006

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley