KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 3913. Consider the following two number sets:


A=\left\{ \frac{3n-4}{5n-3}\colon n \in \mathbb{Z}\right\} \quad \mbox{and}\quad B=\left\{
\frac{4k-3}{7k-6}\colon k\in \mathbb{Z}\right\}.

How many elements are there in the set A\capB?

(3 points)

Deadline expired on 15 June 2006.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Könnyű ellenőrizni, hogy

\frac{3n-4}{5n-3}=\frac{3n'-4}{5n'-3}

esetén n=n', vagyis különböző n értékekre az A halmaz különböző elemeit kapjuk. Hasonló állítás igaz a B halmaz esetében is. Azt kell tehát meghatároznunk, hogy hány olyan egészekből álló n,k számpár van, amelyre

\frac{3n-4}{5n-3}=\frac{4k-3}{7k-6}.

Mivel a nevezőkben soha nem áll 0, a feltétel ekvivalens a

(3n-4)(7k-6)=(4k-3)(5n-3)

feltétellel, ami egyszerű átalakításokkal

(n-16)(k-3)=33

alakra hozható. A 33=3.11 számnak 4 pozitív és ugyanennyi negatív osztója van. Ezért a megfelelő n,k számpárok száma 8, ennyi közös eleme van tehát az A és B halmaznak.


Statistics on problem B. 3913.
103 students sent a solution.
3 points:Árvay Anna, Balogh 147 Ádám, Bartha Zsolt, Blázsik Zoltán, Csaba Ákos, Csató László, Cséke Balázs, Cserép Gergely, Csizmadija Laura, Csorba János, Dányi Zsolt, Dombi Soma, Faragó Kornél, Grósz Dániel, Gyöngyösi Zsolt, Gyurcsik Judit, Herber Máté, Héricz Dalma, Horváth 385 Vanda, Hotzi Bernadette, Kardos Kinga Gabriela, Kiss 243 Réka, Kiss Blanka, Kunovszki Péter, Mészáros Gábor, Müller Márk, Németh 007 Zsolt, Orosz Katalin, Pásztor Attila, Peregi Tamás, Pesti Veronika, Salát Zsófia, Sümegi Károly, Szabó Levente, Szalóki Dávid, Szirmai Péter, Szívós Eszter, Szórádi Márk, Szudi László, Szűcs Gergely, Ta Phuong Linh, Tóth 222 Barnabás, Tóthmérész Lilla, Varga 171 László, Vásárhelyi Bálint Márk, Vörös Tamás, Wolosz János.
2 points:39 students.
1 point:6 students.
0 point:11 students.


  • Problems in Mathematics of KöMaL, May 2006

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley