KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 3920. Solve the equation 3x+4y=5z in the set of positive integers.

(5 points)

Deadline expired on 15 June 2006.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: 5z 4-gyel osztva 1 maradákot ad, ezért 3x is, vagyis x páros. Mivel pedig 4y 3-mal osztva 1 maradákot ad, 5z is azt kell hogy adjon, vagyis z is páros. Tehát a=3x/2, b=2y és c=5z/2 olyan egész számok, amelyekre a2+b2=c2, vagyis 4y=b2=(c+a)(c-a). Itt c+a és c-a is páros számok, tehát az s=(c+a)/2, t=(c-a)/2 pozitív egész számokra st=4y-1 négyzetszám. Mivel s+t=c és s-t=a relatív prímek, alkalmas u,v egymáshoz relatív prím pozitív egészekkel s=u2, t=v2. Mivel st 2-hatvány, u és v is az kell legyen, de u>v miatt ez csak v=1 esetén teljesülhet (u,v)=1 miatt. Vagyis

3x/2=a=s-t=u2-1=(u+1)(u-1),

ahol a jobboldalon mindkét tényező 3-hatvány. Viszont nem lehet mind a kettő 3-mal osztható, hiszen különbségük 2. Ezért u-1=1, u=2, a=3, x=2, c=s+t=u2+1=5, z=2, y=2. Az egyenlet egyetlen megoldása tehát a már a görögök által is jól ismert x=y=z=2.


Statistics on problem B. 3920.
42 students sent a solution.
5 points:Csató László, Dányi Zsolt, Dombi Soma, Honner Balázs, Károlyi Márton, Kovács 129 Péter, Kunovszki Péter, Mészáros Gábor, Nagy 235 János, Peregi Tamás, Salát Zsófia, Sümegi Károly, Szakács Nóra, Szalóki Dávid, Tomon István, Tossenberger Anna, Udvari Balázs, Varga 171 László.
4 points:Győrffy Lajos, Kardos Kinga Gabriela, Kovács 111 Péter, Kovács 333 Veronika, Kutas Péter, Mercz Béla, Páldy Sándor, Sárkány Lőrinc, Szilágyi 987 Csaba, Szudi László.
3 points:3 students.
2 points:3 students.
0 point:6 students.
Unfair, not evaluated:2 solutions.


  • Problems in Mathematics of KöMaL, May 2006

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley