KöMaL - Középiskolai Matematikai és Fizikai Lapok
English Információ A lap Pontverseny Cikkekről Távoktatás Hírek Fórum Internetes Tesztverseny
Versenykiírás
Tudnivalók
Nevezési lap
Feladatok
A verseny állása
Korábbi évek
Arcképcsarnok
Munkafüzet

 

Rendelje meg a KöMaL-t!

Támogatóink:

tehetseg.hu

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Reklám:

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 3923. A sakktábla néhány mezőjének behúzzuk egy-egy átlóját úgy, hogy semelyik kettőnek ne legyen közös pontja. Legfeljebb hány átlót rajzolhatunk így meg?

(Zrínyi versenyfeladat nyomán)

(4 pont)

A beküldési határid LEJÁRT.


Megoldás: 36 átlót megrajzolhatunk az ábrán látható módon.

Ennél többet azonban nem, ugyanis a sakktábla mezőinek csúcsai egy 9×9-es rácsot alkotnak, minden berajzolható átlónak valamelyik végpontja ezen rács 2., 4., 6. vagy 8. sorában helyezkedik el, és ezen 36 pont mindegyike legfeljebb egy berajzolt átlóhoz tartozhat.


A B. 3923. feladat statisztikája
320 dolgozat érkezett.
4 pontot kapott:86 versenyz .
3 pontot kapott:41 versenyz .
2 pontot kapott:136 versenyz .
1 pontot kapott:2 versenyz .
0 pontot kapott:53 versenyz .
Nem versenyszer :2 dolgozat.


  • A KöMaL 2006. szeptemberi matematika feladatai

  • Támogatóink:   Ericsson   Google   Szerencsejáték Zrt.   Emberi Erőforrások Minisztériuma   Emberi Erőforrás Támogatáskezelő   Oktatáskutató és Fejlesztő Intézet   ELTE   Nemzeti Tehetség Program   Nemzeti
Kulturális Alap