KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 3959. Let K be an arbitrary point inside the triangle A1A2A3 and denote the centroid of the triangle KAjAkAs by Si (i=1,2,3,). Prove that the line segments AiSi are concurrent.

(4 points)

Deadline expired on 15 January 2007.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Vegyünk fel a háromszög H síkján kívül egy K' pontot, amelynek H-ra való merőleges vetülete éppen a K pont. Ha a K'AjAk háromszög súlypontja S'i, az AjAk szakasz felezőpontja pedig Fi, akkor Si éppen a KFi szakasz Fi-hez közelebbi harmadolópontja, S'i pedig a K'Fi szakasz Fi-hez közelebbi harmadolópontja. A K'KFi háromszöget tehát Fi középpontú 1/3 arányú hasonlóság viszi az S'iSiFi háromszögbe, ezért K'K párhuzamos az S'iSi szakasszal, vagyis Si éppen az S'i pont merőleges vetülete a H síkra. Az AiS'i szakaszok egy közös S ponton haladnak át, amely az A1A2A3K' tetraéder súlypontja. Ezért az ASi szakaszok, melyek az előbbi szakaszok H-ra való vetületei, szintén egy ponton mennek át, mégpedig az S pontnak a H síkra való merőleges vetületén.


Statistics on problem B. 3959.
86 students sent a solution.
4 points:75 students.
3 points:4 students.
2 points:2 students.
1 point:2 students.
0 point:3 students.


  • Problems in Mathematics of KöMaL, December 2006

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley