KöMaL - Középiskolai Matematikai és Fizikai Lapok
English Információ A lap Pontverseny Cikkekről Távoktatás Hírek Fórum Internetes Tesztverseny
Versenykiírás
Tudnivalók
Nevezési lap
Feladatok
A verseny állása
Korábbi évek
Arcképcsarnok
Munkafüzet

 

apehman

Rendelje meg a KöMaL-t!

Támogatóink:

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Reklám:

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

hirdetés

B. 3965. Az ABC hegyesszögű háromszög AB és AC oldala fölé kifelé félköröket rajzolunk. A szemközti csúcsokból húzott magasságvonalak egyenesének a félkörökkel való metszéspontja legyen M és N. Bizonyítsuk be, hogy AM=AN.

(3 pont)

A beküldési határidő LEJÁRT.


Megoldás: Tegyük fel, hogy az M pont van a B-ből induló magasság egyenesén. Jelölje BM és AC metszéspontját X. Az AXM és AMC derékszögű háromszögek hasonlóságából AM:AX=AC:AM, vagyis AM2=AX.AC. A szokásos jelölésekkel itt AC=b és AX=acos \alpha, tehát AM=\sqrt{ab\cos\alpha}. Szimmetria okok miatt ugyanez a képlet érvényes AN-re is.


A B. 3965. feladat statisztikája
107 dolgozat érkezett.
3 pontot kapott:98 versenyző.
2 pontot kapott:5 versenyző.
1 pontot kapott:1 versenyző.
0 pontot kapott:2 versenyző.
Nem versenyszerű:1 dolgozat.


  • A KöMaL 2007. januári matematika feladatai

  • Támogatóink:   Ericsson   Google   Szerencsejáték Zrt.   Emberi Erőforrások Minisztériuma   Emberi Erőforrás Támogatáskezelő   Oktatáskutató és Fejlesztő Intézet   ELTE   Nemzeti Tehetség Program   Nemzeti
Kulturális Alap