KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

MBUTTONS

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 3972. Let n be a positive integer. Prove that there exist n integers such that their sum is 0 and their product is n if and only if n is divisible by 4.

(3 points)

Deadline expired on 19 March 2007.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Ha n páratlan, akkor a szorzatra vonatkozó feltétel miatt mindegyik szám páratlan kellene legyen, de páratlan sok páratlan szám összege nem lehet 0, lévén páratlan. Hasonlóképpen, ha n páros, de 4-gyel nem osztható, akkor a számok között pontosan egy párosnak kellene lennie, amiért is a számok összege ismét páratlan lenne. Ha n osztható 8-cal, akkor 1 darab 2-es, 1 darab \frac{n}{2}-es, \frac{n}{4}-2 darab 1-es és \frac{3n}{4} darab -1-es megfelelő lesz. Végül, ha n nem osztható 8-cal, de 4-gyel igen, akkor 1 darab -2-es, 1 darab \frac{n}{2}-es, \frac{n}{4} darab 1-es és \frac{3n}{4}-2 darab -1-es lesz megfelelő választás.


Statistics on problem B. 3972.
138 students sent a solution.
3 points:51 students.
2 points:23 students.
1 point:50 students.
0 point:14 students.


  • Problems in Mathematics of KöMaL, February 2007

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley