KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 3996. We have a rectangular sheet of paper. We want to make polygons of 20 sides from it according to the following rule: In each step, we choose a piece of paper (initially, this must be the original sheet) and cut it in two along a straight line. Continuing the procedure what is the minimum number of cuts needed to get one hundred pieces 20-sided polygons?

Competition problem from Germany

(5 points)

Deadline expired on 15 May 2007.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Minden vágás után eggyel nő a sokszögek száma. A t-edik vágás után tehát t+1 darab sokszögünk van, ezek oldalszámait jelölje a_0,a_1,\ldots,a_t. Kezdetben (vagyis a 0-adik vágás után) t=0, a0=4. Definiáljuk a K(t)=\sum_{i=0}^t (a_i-3) mennyiséget, ez egy nemnegatív egész szám, hiszen minden összeadandója is az, és K(0)=1. Azt állítjuk, hogy K(t+1)\leK(t)+1. Valóban, K(t+1) t+2 darab összeadandója közül t darab megegyezik K(t) t+1 darab összeadandója közül t darabbal, a maradék két tag pedig K(t) kimaradt tagjából származtatható úgy, hogy ha ez a kimaradt tag a-3 volt, akkor az a oldalú sokszöget vágtuk ketté egy b és egy c oldalú sokszögre, K(t+1) két kimaradt tagja ekkor b-3 és c-3. Könnyű meggondolni, hogy b+c\lea+4, vagyis (b-3)+(c-3)\le(a-3)+1, innen az állítás.

Ha a t-edik vágás után van legalább 100 darab 20-szög, akkor K(t)\ge100(20-3)=1700, de az előzőek szerint K(t)\leK(0)+t=t+1, ahonnan t\ge1699 következik. Tehát legalább 1699 vágásra szükség van. Ennyi elegendő is: az első 99 vágással mindig négyszögeket gyártva elkészíthetünk 100 darab négyszöget, mindegyiken 16 alkalmas további vágást ejtve belőlük 20-szögeket fabrikálhatunk (és lesz még mellé 1600 darab levágott kis háromszögünk).


Statistics on problem B. 3996.
42 students sent a solution.
5 points:Cséke Balázs, Éles András, Farkas Ádám László, Grósz Dániel, Kunos Ádám, Kunovszki Péter, Szalóki Dávid, Szőke Nóra, Szűcs Gergely, Varga 171 László, Wolosz János.
4 points:Aczél Gergely, Blázsik Zoltán, Farkas Márton, Mészáros András, Nagy 648 Donát, Sümegi Károly, Tossenberger Anna, Tóth 222 Barnabás, Tóth 666 László Márton.
3 points:5 students.
2 points:11 students.
0 point:5 students.
Unfair, not evaluated:1 solution.


  • Problems in Mathematics of KöMaL, April 2007

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley