Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?
I want the old design back!!! :-)

Problem B. 3997. (April 2007)

B. 3997. Prove that if the product of the real numbers x, y, z is 1, then

x4+y4+z4+x2y2+y2z2+z2x2\ge2(x+y+z).

(4 pont)

Deadline expired on May 15, 2007.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás: Az a2+b2\ge2ab egyenlőtlenség felhasználásával kapjuk, hogy

x4+y4+z4+x2y2+y2z2+z2x2\ge2(x2y2+y2z2+z2x2).

Ugyanígy a2b2+b2c2\ge2(ab)(ac)=2ab2c miatt

2(x2y2+y2z2+z2x2)\ge2(x2yz+xy2z+xyz2)=2xyz(x+y+z)=2(x+y+z),

a bizonyítandó állítás tehát következik a két egyenlőtlenség konkatenációjából. Az első helyen akkor van egyenlőség, ha x2=y2=z2, a második helyen pedig akkor, ha xy=xz=yz. Egyenlőség esete tehát pontosan akkor áll fenn, ha mind a három szám 1-gyel egyenlő.


Statistics:

109 students sent a solution.
4 points:86 students.
3 points:12 students.
1 point:1 student.
0 point:4 students.
Unfair, not evaluated:6 solutions.

Problems in Mathematics of KöMaL, April 2007