KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem B. 3997. (April 2007)

B. 3997. Prove that if the product of the real numbers x, y, z is 1, then

x4+y4+z4+x2y2+y2z2+z2x2\ge2(x+y+z).

(4 pont)

Deadline expired on 15 May 2007.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás: Az a2+b2\ge2ab egyenlőtlenség felhasználásával kapjuk, hogy

x4+y4+z4+x2y2+y2z2+z2x2\ge2(x2y2+y2z2+z2x2).

Ugyanígy a2b2+b2c2\ge2(ab)(ac)=2ab2c miatt

2(x2y2+y2z2+z2x2)\ge2(x2yz+xy2z+xyz2)=2xyz(x+y+z)=2(x+y+z),

a bizonyítandó állítás tehát következik a két egyenlőtlenség konkatenációjából. Az első helyen akkor van egyenlőség, ha x2=y2=z2, a második helyen pedig akkor, ha xy=xz=yz. Egyenlőség esete tehát pontosan akkor áll fenn, ha mind a három szám 1-gyel egyenlő.


Statistics:

109 students sent a solution.
4 points:86 students.
3 points:12 students.
1 point:1 student.
0 point:4 students.
Unfair, not evaluated:6 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley