KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4010. p(x) and q(x) are polynomials of real coefficients that have no real roots in common, and p(q(x))=q(p(x)) for all x. Prove that the polynomials p(p(x)) and q(q(x)) have no common real roots either.

(4 points)

Deadline expired on 15 June 2007.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Tegyük fel, hogy az állítással ellentétben p(p(\alpha))=q(q(\alpha))=c valamilyen \alpha valós számra. Legyen a=p(\alpha), b=q(\alpha), ekkor p(a)=q(b)=c. Az első feltétel szerint a\neb, a második feltétel szerint pedig q(a)=q(p(\alpha))=p(q(\alpha))=p(b)=d. A p(a)\neq(a) feltétel miatt c\ned. A p függvény grafikonja összeköti az (a,c) pontot a (b,d) ponttal, a q függvény grafikonja pedig az (a,d) pontot a (b,c) ponttal. A két grafikon valahol metszi egymást: létezik olyan a<\beta<b szám, amelyre p(\beta)=q(\beta). Ez viszont ellentmond az első feltételnek.


Statistics on problem B. 4010.
37 students sent a solution.
4 points:Ágoston Tamás, Almási 270 Gábor András, Aujeszky Tamás, Blázsik Zoltán, Bodor Bertalan, Cseh Ágnes, Éles András, Énekes Péter, Gele Viktória, Godó Zita, Grósz Dániel, Keresztfalvi Tibor, Korom-Vellás Judit, Lovas Lia Izabella, Márkus Bence, Peregi Tamás, Réti Dávid, Somogyi Ákos, Szalóki Dávid, Szűcs Gergely, Tóth 666 László Márton, Varga 171 László, Wagner Zsolt.
3 points:Aczél Gergely, Dinh Hoangthanh Attila, Konkoly Csaba, Kunos Ádám, Mihálykó Ágnes, Szalkai Balázs, Szőke Nóra, Tossenberger Anna, Tóth 222 Barnabás.
2 points:1 student.
1 point:1 student.
Unfair, not evaluated:3 solutions.


  • Problems in Mathematics of KöMaL, May 2007

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley