KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Conditions
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years

 

 

Order KöMaL!

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Competitions Portal

B. 4019. Prove that


\frac{1}{3^2} + \frac{1}{5^2} + \dots + \frac{1}{{(2n+1)}^2} < \frac{1}{4}.

for every positive integer n.

(Competition problem from the Highlands)

(4 points)

Deadline expired.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Minden k pozitív egész számra

\Bigl(\frac{1}{2k+1}\Bigr)^2
<\frac{1}{4k^2+4k}=\frac{1}{4}\cdot\frac{1}{k(k+1)}
=\frac{1}{4}\Bigl(\frac{1}{k}-\frac{1}{k+1}\Bigr),

ezért a szóban forgó összeg kisebb, mint

\frac{1}{4}\Bigl\{\Bigl(\frac{1}{1}-\frac{1}{2}\Bigr)+
\Bigl(\frac{1}{2}-\frac{1}{3}\Bigr)+\ldots+
\Bigl(\frac{1}{n}-\frac{1}{n+1}\Bigr)\Bigr\}=
\frac{1}{4}\Bigl(1-\frac{1}{n+1}\Bigr)<\frac{1}{4}.


Statistics on problem B. 4019.
178 students sent a solution.
4 points:133 students.
3 points:8 students.
2 points:5 students.
1 point:6 students.
0 point:26 students.


  • Problems in Mathematics of KöMaL, September 2007

  • Our web pages are supported by: Ericsson   Google   SzerencsejátĂ©k Zrt.   Emberi ErĹ‘források MinisztĂ©riuma   Emberi ErĹ‘forrás TámogatáskezelĹ‘   OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   ELTE   Nemzeti TehetsĂ©g Program