KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4024. How many numbers can be selected out of the first 1000 positive integers at most, so that the sum of no pair of selected numbers is divisible by their difference.

(3 points)

Deadline expired on 15 November 2007.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Ha az n számot kiválasztottuk, akkor sem n+1, sem n+2 nem lehet a kiválasztottak között; három egymást követő szám közül legfeljebb egyet választhatunk ki. Ezért az első 999 pozitív egész közül legfeljebb 333-at, az első 1000 közül pedig legfeljebb 334-et választhatunk ki.

Ennyit pedig ki is lehet választani. Tekintsük ugyanis az 1,4,7,...,1000 számokat, ezek mindegyike 1 maradékot ad 3-mal osztva. Bármely kettő különbsége osztható tehát 3-mal, és ezért nem lehet osztója semelyik két szám összegének, hiszen az 3-mal osztva 2 maradékot ad.


Statistics on problem B. 4024.
164 students sent a solution.
3 points:114 students.
2 points:30 students.
1 point:14 students.
0 point:3 students.
Unfair, not evaluated:3 solutions.


  • Problems in Mathematics of KöMaL, October 2007

  • Támogatóink:   Ericsson   Google   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program  
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley