KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem B. 4042. (December 2007)

B. 4042. A 2007×2008 chessboard is covered by a few 2×2 and 1×4 dominoes without overlaps. One 2×2 domino of the set of dominoes used is replaced with a 1×4 domino. Prove that it is not possible to cover the chessboard with the modified set.

(4 pont)

Deadline expired on 15 January 2008.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás: Színezzük feketére a sakktábla minden második sorának minden második mezőjét, a többi maradjon fehér. A sakktábla bármely lefedésében minden egyes dominó 4 teljes mezőt fed le. Egy 2×2-es dominó pontosan 1 fekete és 3 fehér mezőt fed le, míg egy 1×4-es dominó által lefedett mezők közül 0 vagy 2, tehát páros számú lesz fekete. Minthogy 2008 osztható 4-gyel, a fekete mezők száma páros, tehát bármely lefedéshez páros számú 2×2-es dominó szükséges. Az új készletben azonban a 2×2-es dominók száma páratlan.


Statistics:

>
138 students sent a solution.
4 points:74 students.
3 points:8 students.
2 points:13 students.
1 point:35 students.
0 point:7 students.
Unfair, not evaluated:1 solution.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley