KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Conditions
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years

 

 

Order KöMaL!

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Competitions Portal

B. 4042. A 2007×2008 chessboard is covered by a few 2×2 and 1×4 dominoes without overlaps. One 2×2 domino of the set of dominoes used is replaced with a 1×4 domino. Prove that it is not possible to cover the chessboard with the modified set.

(4 points)

Deadline expired.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Színezzük feketére a sakktábla minden második sorának minden második mezőjét, a többi maradjon fehér. A sakktábla bármely lefedésében minden egyes dominó 4 teljes mezőt fed le. Egy 2×2-es dominó pontosan 1 fekete és 3 fehér mezőt fed le, míg egy 1×4-es dominó által lefedett mezők közül 0 vagy 2, tehát páros számú lesz fekete. Minthogy 2008 osztható 4-gyel, a fekete mezők száma páros, tehát bármely lefedéshez páros számú 2×2-es dominó szükséges. Az új készletben azonban a 2×2-es dominók száma páratlan.


Statistics on problem B. 4042.
138 students sent a solution.
4 points:74 students.
3 points:8 students.
2 points:13 students.
1 point:35 students.
0 point:7 students.
Unfair, not evaluated:1 solution.


  • Problems in Mathematics of KöMaL, December 2007

  • Our web pages are supported by: Ericsson   Google   SzerencsejátĂ©k Zrt.   Emberi ErĹ‘források MinisztĂ©riuma   Emberi ErĹ‘forrás TámogatáskezelĹ‘   OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   ELTE   Nemzeti TehetsĂ©g Program