KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem B. 4050. (December 2007)

B. 4050. Show that the equation x3-x2-2x+1=0 has two real roots a and b, such that a-ab=1.

Suggested by J. Pataki, Budapest

(5 pont)

Deadline expired on 15 January 2008.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás: Mivel az f(x)=x3-x2-2x+1 függvény a -2 és az 1 helyen negatív, a 0 és a 2 helyeken pedig pozitív értékeket vesz fel, az egyenletnek három különböző valós gyöke van. Jelölje ezeket p,q,r. Azt fogjuk belátni, hogy p-pq és p-pr közül valamelyik 1-gyel egyenlő, ebből három megfelelő a,b gyökpár létezése is következik. A gyökök és együtthatók közötti összefüggés szerint p+q+r=1, pq+qr+rp=-2 és pqr=-1. Ezek alapján

(p-1)+(q-1)+(r-1)=(p+q+r)-3=-2,

(p-1)(q-1)+(q-1)(r-1)+(r-1)(p-1)=(pq+qr+rp)-2(p+q+r)+3=-1

és

(p-1)(q-1)(r-1)=pqr-(pq+qr+rp)+(p+q+r)-1=1

következik, vagyis a páronként különböző p-1, q-1 és r-1 számok éppen az

x3+2x2-x-1=0

egyenlet gyökei. Az egymástól szintén különböző pq, qr és rp számok összege -2, szorzata (pqr)2=1, és ezenkívül

(pq)(qr)+(qr)(rp)+(rp)(pq)=rpq(r+p+q)=-1

teljesül, vagyis ez a három szám is éppen az előbb felírt harmadfokú egyenlet három gyöke. Ezért p-1 megegyezik a pq,qr,rp számok valamelyikével. Ha p-1=qr lenne, akkor qr=-1/p miatt p megoldása lenne az x2-x+1=0 egyenletnek, amelynek viszont nincsen valós megoldása. Ezért vagy p-1=pq, vagy p-1=rp teljesül. Az első esetben p-pq=1, a másodikban p-pr=1, ahogyan azt állítottuk.


Statistics:

85 students sent a solution.
5 points:55 students.
4 points:22 students.
3 points:1 student.
2 points:1 student.
1 point:3 students.
0 point:3 students.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley