KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Conditions
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years

 

 

Order KöMaL!

tehetseg.hu

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Competitions Portal

B. 4055. Prove that every number not greater than n! can be expressed as a sum of at most n different factors of the number n!.

(5 points)

Deadline expired on 15 February 2008.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Az állítás n=1-re nyilván igaz. A teljes indukciós bizonyításhoz tegyük fel, hogy n\ge2, és az állítást n helyett n-1 esetére már igazoltuk. Legyen 1\lek\len!. Ha k\len, akkor k\mid n!, vagyis egy darab osztó összegeként előáll. Feltehetjük tehát, hogy n+1\lek\len!. Legyen k=nq+r, ahol 0\ler\len-1 és 1\leq\le(n-1)!. Az indukciós feltevés miatt q=d_1+\ldots+d_t, ahol t\len-1 és d_1,d_2,\ldots,d_t az (n-1)! különböző osztói. Ekkor

k=nd_1+nd_2+\ldots+nd_t+r,

ahol nd_1,nd_2,\ldots,nd_t az n! különböző osztói. Ezzel r=0 esetén a k számot az n! legfeljebb n-1 darab különböző osztójának összegeként írtuk fel, 1\ler\len-1 esetén pedig legfeljebb n darab különböző osztó összegeként, hiszen r nem egyezhet meg egyik ndi számmal sem, lévén r<n\lendi.


Statistics on problem B. 4055.
50 students sent a solution.
5 points:Ágoston Tamás, Bálint Dániel, Bencs 111 Ferenc, Blázsik Zoltán, Bodor Bertalan, Cséke Balázs, Csere Kálmán, Dinh Hoangthanh Attila, Dudás 002 Zsolt, Éles András, Énekes Péter, Farkas Márton, Fonyó Dávid, Frankl Nóra, Gőgös Balázs, Grósz Dániel, Kalina Kende, Keresztfalvi Tibor, Kiss 243 Réka, Kovács 729 Gergely, Lajos Mátyás, Lovas Lia Izabella, Márki Róbert, Márkus Bence, Mészáros András, Misnyovszki Péter, Nagy 648 Donát, Nagy-Baló András, Németh Bence, Palincza Richárd, Somogyi Ákos, Szabó 895 Dávid, Szalkai Balázs, Szepesvári Dávid, Szigetvári Áron, Szőke Nóra, Tossenberger Anna, Tóth 369 László Márton, Tubak Dániel, Varga 171 László, Véges Márton, Wang Daqian, Zieger Milán.
4 points:Kovács 999 Noémi, Tóth 222 Barnabás.
1 point:4 students.
0 point:1 student.


  • Problems in Mathematics of KöMaL, January 2008

  • Our web pages are supported by: Ericsson   Google   SzerencsejátĂ©k Zrt.   Emberi ErĹ‘források MinisztĂ©riuma   Emberi ErĹ‘forrás TámogatáskezelĹ‘   OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   ELTE   Nemzeti TehetsĂ©g Program