KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Conditions
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years

 

 

Order KöMaL!

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Competitions Portal

B. 4071. Prove that for every positive integer n, \min_{k \in \mathbb{N}} \left[k +
\frac{n}{k}\right] =
\big[\sqrt{4n + 1}\,\big].

I. Blahota

(4 points)

Deadline expired.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Legyen [\sqrt{n}]=m, ekkor m\le \sqrt{n}<m+1, m2\len<m2+2m+1. Ha k,\ell természetes számok, akkor

\Bigl(k+\frac{n}{k}\Bigr)-\Bigl(\ell+\frac{n}{\ell}\Bigr)=
\frac{(k-\ell)(k\ell-n)}{k\ell}\le 0,

feltéve, hogy \ell\le k=m\le \sqrt{n} vagy \ell\ge k=m+1> \sqrt{n}. Innen rögtön következik, hogy

\min_{k \in \mathbb{N}} \left[k + \frac{n}{k}\right] = \min\Bigl\{ 
m +\Bigl[\frac{n}{m}\Bigr],m+1+\Bigl[\frac{n}{m+1}\Bigr]\Bigr\}.

Ha m2\len\lem2+m-1, akkor

(2m)2+1\le4n+1\le(2m+1)2-4,

vagyis [4n+1]=2m. Továbbá m\le \frac{n}{m}<m+1 és m-1<\frac{n}{m+1}<m miatt

m +\Bigl[\frac{n}{m}\Bigr]=m+1+\Bigl[\frac{n}{m+1}\Bigr]=2m,

tehát az egyenlőség ez esetben teljesül. Ha pedig m2+m\len\lem2+2m, akkor egyrészt

(2m+1)2\le4n+1\le(2m+2)2-3,

vagyis [4n+1]=2m+1, másrészt m+1\le \frac{n}{m}\le m+2 és m\le \frac{n}{m+1}<m+1 miatt

m+1+\Bigl[\frac{n}{m+1}\Bigr]=2m+1\le m +\Bigl[\frac{n}{m}\Bigr]\le 2m+2,

tehát az egyenlőség ebben az esetben is teljesül.


Statistics on problem B. 4071.
32 students sent a solution.
4 points:Aujeszky Tamás, Blázsik Zoltán, Bodor Bertalan, Énekes Péter, Kiss 243 Réka, Márkus Bence, Mihálykó Ágnes, Nagy 648 Donát, Somogyi Ákos, Szalkai Balázs, Tossenberger Anna, Varga 171 László, Véges Márton, Weisz Ágoston.
3 points:Huszár Kristóf, Kovács 729 Gergely, Strenner Péter.
2 points:4 students.
1 point:5 students.
0 point:6 students.


  • Problems in Mathematics of KöMaL, February 2008

  • Our web pages are supported by: Ericsson   Google   SzerencsejátĂ©k Zrt.   Emberi ErĹ‘források MinisztĂ©riuma   Emberi ErĹ‘forrás TámogatáskezelĹ‘   OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   ELTE   Nemzeti TehetsĂ©g Program