KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4072. Let S(n) denote the sum of the digits of the natural number n. Prove that there are infinitely many natural numbers n not ending in 0, such that S(n2)=S(n).

Suggested by G. Holló, Budapest

(3 points)

Deadline expired on 15 April 2008.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Minden k természetes számra n=10k-1 megfelelő lesz. Ekkor ugyanis egyrészt n olyan k-jegyű szám, amelynek minden számjegye 9-es, vagyis S(n)=9k. Másrészt

n2=102k-2.10k+1=10k(10k-2)+1,

vagyis S(n2)=S(10k-2)+1. Itt 10k-2 az a k-jegyű szám, amelynek minden számjegye 9-es, kivéve az utolsót, ami 8-as. Ezért S(10k-2)=9(k-1)+8, S(n2)=9(k-1)+8+1=9k=S(n).


Statistics on problem B. 4072.
118 students sent a solution.
3 points:112 students.
2 points:4 students.
1 point:1 student.
Unfair, not evaluated:1 solution.


  • Problems in Mathematics of KöMaL, March 2008

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley