KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem B. 4165. (March 2009)

B. 4165. The diagonals of a convex quadrilateral ABCD intersect at O. Prove that AB2+BC2+CD2+DA2=2(AO2+BO2+CO2+DO2) is true if and only if the diagonals AC and BD are perpendicular or one of them has its midpoint at O.

Kvant

(3 pont)

Deadline expired on 15 April 2009.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás: Az O pontból a négyszög csúcsaiba mutató vektorokat jelölje értelemszerűen a,b,c,d. A vektorok skaláris szorzatát használva a szóban forgó összefüggést

(b-a)2+(c-b)2+(d-c)2+(a-d)2=2(a2+b2+c2+d2)

alakban írhatjuk fel, ami ekvivalens az ab+bc+cd+da=0, vagy másképpen az (a+c)(b+d)=0 összefüggéssel. Ez pedig azt jelenti, hogy vagy a+c=0, vagyis c=-a, tehát O az AC átló felezőpontja, vagy b+d=0, tehát O a BD átló felezőpontja, vagy pedig az AC átlóval párhuzamos nemnulla a+c vektor merőleges a BD átlóval párhuzamos nemnulla b+d vektorra.


Statistics:

103 students sent a solution.
3 points:91 students.
2 points:3 students.
1 point:6 students.
0 point:1 student.
Unfair, not evaluated:2 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley