KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4177. The tangents drawn to the circumscribed circle of triangle ABC at the points B and C intersect each other at point M. The line drawn through M parallel to AB intersects line AC at N. Prove that AN=BN.

(4 points)

Deadline expired on 15 May 2009.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Az M pont létrejöttének szükséges és elégséges feltétele, hogy a BC szakasz ne átmérője legyen a körülírt körnek, vagyis a háromszög A csúcsnál lévő \alpha szöge ne legyen derékszög. Ha \alpha tompaszög, akkor az A és M pontok a BC egyenesnek ugyanarra az oldalára esnek, az N pont pedig a CA félegyenes A-n túli meghosszabbítására esik. Ha \alpha hegyesszög és CA=CB, akkor N=C, és az állítás nyilvánvaló, egyébként pedig az N pont aszerint esik az AC szakaszra, illetve az AC félegyenes C-n túli meghosszabbítására, hogy a BC oldal rövidebb-e, vagy hosszabb az AC oldalnál. Mindhárom esetben hasonló gondolatokra épül a bizonyítás, csak a részletekben van apró eltérés. A megoldás kulcsa annak észrevétele, hogy az B,C,M,N pontok és a körülírt kör O középpontja egy körvonalra esnek.

Tegyük fel, hogy \alpha<90o és BC<AC. A kerületi és középponti szögek tétele értelmében a BCM,CBM,BOM és COM szögek mindegyike \alpha-val egyenlő, a B,C,O,M pontok egy k körön helyezkednek el. A párhuzamosság miatt az MNC szög is \alpha, ezért az N pont is k-ra esik, minek következtében a BM szakasz az N pontból is \alpha szög alatt látszik, és így az ABN szög, amely az MNB szöggel váltószöget alkot, szintén \alpha nagyságú. Az ABN háromszög tehát egyenlő szárú, AN=BN.

A BC>AC esetben mindössze annyi a különbség, hogy az MNC szög nagysága 180o-\alpha, de most B és N az MC húr különböző oldalára esnek, ezért illeszkedik az N pont is a k körre. A tompaszögű esetben pedig minden szög, ami az első esetben \alpha volt, 180o-\alpha nagyságú lesz, kivéve az MNB szöget, amelyre most \alpha adódik. Most viszont az MNB és ABN szögek 180o-ra egészítik ki egymást, ezért lesz az ABN és a BAN szög egyaránt 180o-\alpha.


Statistics on problem B. 4177.
71 students sent a solution.
4 points:Ádám Liliána, Blázsik Zoltán, Dinh Hoangthanh Attila, Fonyó Dávid, Győrfi 946 Mónika, Hajdók Soma, Horowitz Gábor, Horváth 131 Anna, Horváth 606 Roland, Huszár Kristóf, Janosov Milán, Korondi Zénó, Kovács 235 Gábor, Kovács 999 Noémi, Loose Lilla, Márkus Bence, Mester Márton, Somogyi Ákos, Strenner Péter, Tóth 222 Barnabás, Varga 171 László, Varju 105 Tamás, Zelena Réka.
3 points:45 students.
1 point:1 student.
Unfair, not evaluated:2 solutions.


  • Problems in Mathematics of KöMaL, April 2009

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley