KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem B. 4195. (September 2009)

B. 4195. The length of the altitudes of a triangle are 10, 12 and 15. How long are the sides?

Suggested by J. Pataki, Budapest

(3 pont)

Deadline expired on 12 October 2009.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Mivel a háromszög oldalai úgy aránylanak egymáshoz, mint a megfelelő magasságok reciprokai, az oldalak aránya 6:5:4. Legyen tehát az oldalak hossza \(\displaystyle 6x\), \(\displaystyle 5x\) és \(\displaystyle 4x\), ahol ezekhez rendre a 10, 12 és 15 hosszú magasságok tartoznak. A Héron-képlet alapján a háromszög \(\displaystyle T\) területére

\(\displaystyle 4T=\sqrt{(6x+5x+4x)(6x+5x-4x)(6x+4x-5x)(5x+4x-6x)}=15\sqrt{7}x^2.\)

Másrészt \(\displaystyle 2T=6x\cdot 10\), ahonnan \(\displaystyle x\)-re a \(\displaystyle 15\sqrt{7}x^2=120x\) egyenletet kapjuk. Innen \(\displaystyle x=8/\sqrt{7}\), a háromszög oldalai pedig \(\displaystyle 48/\sqrt{7}\), \(\displaystyle 40/\sqrt{7}\) és \(\displaystyle 32/\sqrt{7}\).


Statistics:

192 students sent a solution.
3 points:140 students.
2 points:18 students.
1 point:10 students.
0 point:13 students.
Unfair, not evaluated:11 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley