Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem B. 4197. (September 2009)

B. 4197. Prove that if the sides of a triangle satisfy 2b2=a2+c2, then the opposite angles satisfy 2cot \beta=cot \alpha+cot \gamma.

(3 pont)

Deadline expired on October 12, 2009.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. A koszinusz-tétel szerint \(\displaystyle b^2=a^2+c^2-2ac\cos\beta\), vagyis a feltétel ekvivalens azzal, hogy \(\displaystyle b^2=2ac\cos\beta\). Innen a szinusz-tétel alapján

\(\displaystyle 2\cos\beta=\frac{b}{a}\cdot\frac{b}{c}=\frac{\sin\beta}{\sin\alpha} \cdot\frac{\sin\beta}{\sin\gamma},\)

\(\displaystyle 2\text{ctg}\beta = \frac{\sin\beta}{\sin\alpha\cdot\sin\gamma}= \frac{\sin(\alpha+\gamma)}{\sin\alpha\cdot\sin\gamma}= \frac{\sin\alpha\cos\gamma+\sin\gamma\cos\alpha}{\sin\alpha\cdot\sin\gamma}= \text{ctg}\alpha + \text{ctg}\gamma.\)


Statistics:

89 students sent a solution.
3 points:60 students.
2 points:15 students.
1 point:6 students.
0 point:4 students.
Unfair, not evaluated:4 solutions.

Problems in Mathematics of KöMaL, September 2009