KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4198. The midlines are drawn on the base of a regular tetrahedron. The midpoint of each midline is connected to the vertices of the face whose plane is parallel to the midline. Consider the volume of the intersection of the three tetrahedra obtained. What fraction of the volume of the original tetrahedron is it?

(4 points)

Deadline expired on 12 October 2009.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Fogjuk fel a három tetraédert egy-egy olyan gúlának, melyek alaplapja a tetraéder alaplapjának síkjába esik, azzal szemközti csúcsuk pedig egybeesik a tetraéder alaplappal szemközti \(\displaystyle O\) csúcsával. A három alaplap az \(\displaystyle ABF\), a \(\displaystyle BCD\), illetve a \(\displaystyle CAE\) háromszög, melyek közös része a \(\displaystyle DGEHFI\) hatszög. A három tetraéder közös része tehát a \(\displaystyle DGEHFI\) hatszög alapú \(\displaystyle O\) csúcsú gúla, melynek térfogata úgy aránylik az eredeti tetraéder térfogatához, mint a \(\displaystyle DGEHFI\) alaplap területe az \(\displaystyle ABC\) háromszög területéhez; ez utóbbit jelölje \(\displaystyle t\).

Az \(\displaystyle AJL\), \(\displaystyle BKJ\), \(\displaystyle CLK\) és \(\displaystyle JKL\) szabályos háromszögek területe \(\displaystyle t/4\), az \(\displaystyle ADJ\) és \(\displaystyle BEJ\) háromszögeké \(\displaystyle t/8\), a \(\displaystyle DEF\) és \(\displaystyle DEJ\) háromszögeké pedig \(\displaystyle t/16\). Az \(\displaystyle ABED\) szimmetrikus trapéz területe tehát \(\displaystyle 5t/16\). Mivel \(\displaystyle DE:AB=1:4\), ezért \(\displaystyle EG:GA=DG:GB=1:4\). Emiatt az \(\displaystyle AGD\) és \(\displaystyle BGE\) háromszögek területe 4-szerese a \(\displaystyle DEG\) háromszög területének, az \(\displaystyle ABG\) háromszögé pedig 16-szorosa annak. Innen látszik, hogy a \(\displaystyle DGE\) háromszög területe az \(\displaystyle ABED\) trapéz területének \(\displaystyle 1/25\) része, vagyis \(\displaystyle t/80\). Ugyanez igaz az \(\displaystyle EFH\) és \(\displaystyle FDI\) háromszögekre is, vagyis a \(\displaystyle DGEHFI\) hatszög területe

\(\displaystyle \frac{t}{16}+3\cdot\frac{t}{80}=\frac{t}{10}.\)

A három tetraéder közös részének térfogata tehát \(\displaystyle 1/10\) része a tetraéder térfogatának.


Statistics on problem B. 4198.
81 students sent a solution.
4 points:Ágoston Tamás, Árvay Balázs, Balási Szabolcs, Beke Lilla, Bencskó György Árpád, Botos Csongor, Böőr Katalin, Csere Kálmán, Csuka Róbert, Dudás 002 Zsolt, Dunay Luca, Éles András, Gyarmati Máté, Horváth János, Hosszejni Darjus, Janosov Milán, Janzer Olivér, Jéhn Zoltán, Karkus Zsuzsa, Karl Erik Holter, Keresztfalvi Tibor, Korondi Zénó, Köpenczei Gergő, Márkus Bence, Máthé László, Mester Márton, Mészáros András, Mihálka Éva Zsuzsanna, Nagy Róbert, Nagy-György Péter, Neukirchner Elisabeth, Perjési Gábor, Prok Tamás, Sándor Áron Endre, Strenner Péter, Szabó 928 Attila, Szőke Zsófia, Tamási Dénes, Trauttwein Klaudia, Uray Marcell János, Vuchetich Bálint, Weisz Ágoston.
3 points:9 students.
2 points:16 students.
1 point:12 students.
0 point:2 students.


  • Problems in Mathematics of KöMaL, September 2009

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley