KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4203. A common tangent of two intersecting circles touches them at the points A and B, and the line segment connecting their centres intersects them at C and D, respectively. Prove that ABCD is a cyclic quadrilateral.

(4 points)

Deadline expired on 10 November 2009.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. A körök középpontját jelölje \(\displaystyle M\), illetve \(\displaystyle N\) az ábrán látható módon. Mivel \(\displaystyle BAC\sphericalangle+CAM\sphericalangle=90^\circ\), az \(\displaystyle AMC\) egyenlőszárú háromszögben \(\displaystyle AMC\sphericalangle= 180^\circ -2CAM\sphericalangle=2BAC\sphericalangle\). Hasonlóképpen, \(\displaystyle BND\sphericalangle=2ABC\sphericalangle\). Az \(\displaystyle AM\) és \(\displaystyle BN\) szakaszok párhuzamossága miatt \(\displaystyle AMC\sphericalangle+BND\sphericalangle=180^\circ\), ahonnan \(\displaystyle BAC\sphericalangle+ABC\sphericalangle=90^\circ\), vagyis az \(\displaystyle ABC\) háromszög a \(\displaystyle C\) csúcsnál derékszögű. Hasonlóképpen \(\displaystyle ADB\sphericalangle=90^\circ\) is igaz. A \(\displaystyle C\) és \(\displaystyle D\) pontok tehát az \(\displaystyle AB\) szakasz fölé emelt Thalesz-körön vannak, az \(\displaystyle ABCD\) négyszög valóban húrnégyszög.


Statistics on problem B. 4203.
144 students sent a solution.
4 points:97 students.
3 points:13 students.
2 points:5 students.
1 point:5 students.
0 point:17 students.
Unfair, not evaluated:7 solutions.


  • Problems in Mathematics of KöMaL, October 2009

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley