KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4206. Let p>3 be a prime number and let k and m be non-negative integers. Prove that pk+pm cannot be a perfect square. (Suggested by P. Kutas)

(3 points)

Deadline expired on 10 November 2009.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Feltehetjük, hogy \(\displaystyle k\le m\), ekkor \(\displaystyle p^k+p^m=p^k(p^{m-k}+1)\), ahol mindkét tényező pozitív egész. A második tényező csak \(\displaystyle m-k=0\), \(\displaystyle p=2\) esetén lehetne osztható \(\displaystyle p\)-vel. A szám tehát csak úgy lehetne négyzetszám, ha \(\displaystyle k\) páros, és \(\displaystyle p^{m-k}+1=n^2\) teljesül egy alkalmas \(\displaystyle n>1\) egész számmal. Ekkor \(\displaystyle p^{m-k}=n^2-1=(n-1)(n+1)\). Ez csak úgy lehet, ha \(\displaystyle n-1\) és \(\displaystyle n+1\) is \(\displaystyle p\)-hatvány, de mivel nem lehet mindkettő \(\displaystyle p\)-vel osztható, ez csak az \(\displaystyle n-1=1\), \(\displaystyle p^{m-k}=3\) esetben fordulhatna elő, amit azonban kizár a \(\displaystyle p>3\) feltétel.


Statistics on problem B. 4206.
132 students sent a solution.
3 points:81 students.
2 points:11 students.
1 point:21 students.
0 point:14 students.
Unfair, not evaluated:5 solutions.


  • Problems in Mathematics of KöMaL, October 2009

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley