KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem B. 4224. (December 2009)

B. 4224. The lengths of the diagonals of a rhombus with side 2 units are added. What integer values may the sum have?

(Suggested by G. Nyul)

(3 pont)

Deadline expired on 11 January 2010.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Jelölje az átlók hosszát \(\displaystyle a\) és \(\displaystyle b\). Ekkor a Pithagorasz-tétel szerint \(\displaystyle (a/2)^2+(b/2)^2=2^2\),

\(\displaystyle 16=a^2+b^2<(a+b)^2\le 2(a^2+b^2)=32.\)

Ezért ha \(\displaystyle a+b\) egész, akkor csak \(\displaystyle a+b=5\) jöhet szóba. Ilyen rombusz pontosan akkor létezik, ha az \(\displaystyle a+b=5\), \(\displaystyle a^2+b^2=16\) egyenletrendszernek létezik megoldása a pozitív számok körében. Mivel \(\displaystyle (a-b)^2=2(a^2+b^2)-(a+b)^2\), az egyenletrendszer ekvivalens az \(\displaystyle a+b=5\), \(\displaystyle (a-b)^2={7}\) egyenletrendszerrel, melynek megoldásai

\(\displaystyle a=\frac{5\pm\sqrt{7}}{2},\quad b=\frac{5\mp\sqrt{7}}{2}.\)

Mivel ezek pozitív számok, a rombusz átlóinak összege egyedül az 5 egész szám lehet.


Statistics:

162 students sent a solution.
3 points:109 students.
2 points:11 students.
1 point:17 students.
0 point:20 students.
Unfair, not evaluated:5 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley