KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem B. 4226. (December 2009)

B. 4226. a<b<c are the sides of a triangle H. Consider the three rhombuses, such that one vertex coincides with a vertex of H and the other three vertices lie on the sides of H. Given that two of these rhombuses have the same area, show that b2=ac.

(4 pont)

Deadline expired on 11 January 2010.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Tekintsük a három közül azt a rombuszt, amelynek az egyik csúcsa a háromszög \(\displaystyle C\) csúcsával esik egybe. Ezen rombusz oldalának hosszát \(\displaystyle x\)-szel jelölve, a párhuzamos szelők tétele szerint \(\displaystyle a:b=x:(b-x)\), ahonnan \(\displaystyle x=ab/(a+b)\), a rombusz területe pedig

\(\displaystyle T_c=x^2\sin\gamma=\left(\frac{ab}{a+b}\right)^2\cdot\frac{c}{2R}= \frac{1}{c(a+b)^2}\cdot \frac{a^2b^2c^2}{2R}.\)

A másik két rombusz területe hasonlóképpen

\(\displaystyle T_b=\frac{1}{b(a+c)^2}\cdot \frac{a^2b^2c^2}{2R},\quad\hbox{illetve} \quad T_a=\frac{1}{a(b+c)^2}\cdot \frac{a^2b^2c^2}{2R}.\)

Ha \(\displaystyle T_a=T_c\), akkor ezek szerint \(\displaystyle a(b+c)^2=c(a+b)^2\), ahonnan \(\displaystyle (a-c)(b^2-ac)=0\), vagyis \(\displaystyle b^2=ac\) adódik. Másik két rombusz területe viszont nem lehet egyenlő, hiszen abból ugyanígy az \(\displaystyle a^2=bc\) vagy a \(\displaystyle c^2=ab\) összefüggésre jutnánk, ami az oldalhosszak nagyság szerinti sorrendjére tett kikötés szerint lehetetlen.


Statistics:

56 students sent a solution.
4 points:Ágoston Péter, Ágoston Tamás, Botos Csongor, Cséke Balázs, Csere Kálmán, Csuka Róbert, Damásdi Gábor, Dudás 002 Zsolt, Éles András, Hosszejni Darjus, Janzer Olivér, Jernei Tamás, Karkus Zsuzsa, Keresztfalvi Tibor, Kiss 902 Melinda Flóra, Korondi Zénó, Kószó Simon, Kovács 444 Áron, Köpenczei Gergő, Márkus Bence, Máthé László, Medek Ákos, Mester Márton, Mészáros András, Mihálka Éva Zsuzsanna, Morapitiye Sunil, Nagy Róbert, Neukirchner Elisabeth, Perjési Gábor, Sieben Bertilla, Somogyi Ákos, Szabó 928 Attila, Tóth 222 Barnabás, Uray Marcell János, Varga Vajk, Zelena Réka, Zsakó András.
3 points:Ábrahám Zsófia, Énekes Péter, Lajos Mátyás, Nagy Balázs.
2 points:9 students.
1 point:5 students.
0 point:1 student.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley