KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem B. 4247. (February 2010)

B. 4247. Two faces of a cube are ABCD and ABEF. Let M and N denote points on the face diagonals AC and FB, respectively, such that AM=FN. What is the locus of the midpoint of the line segment MN?

(3 pont)

Deadline expired on 10 March 2010.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. A tér egy tetszőleges \(\displaystyle P\) pontjának helyvektorát jelölje \(\displaystyle p\). Ekkor az \(\displaystyle AF\) él \(\displaystyle X\) és a \(\displaystyle BC\) él \(\displaystyle Y\) felezőpontjának helyvektora

\(\displaystyle x=\frac{a+f}{2},\qquad \hbox{illetve}\qquad y=\frac{b+c}{2}.\)

Minthogy \(\displaystyle AC=BF\), ha valamely \(\displaystyle 0\le \lambda \le 1\) esetén \(\displaystyle M\) az \(\displaystyle AC\) lapátlót \(\displaystyle \lambda:(1-\lambda)\) arányban osztó pont, akkor az \(\displaystyle N\) pont az \(\displaystyle FB\) lapátlót szintén \(\displaystyle \lambda:(1-\lambda)\) arányban osztja, és viszont. Ekkor az \(\displaystyle MN\) szakasz \(\displaystyle Z\) felezőpontjára

\(\displaystyle z=\frac{m+n}{2}=\frac{((1-\lambda)a+\lambda c)+((1-\lambda)f+\lambda b)}{2}=(1-\lambda)\cdot\frac{a+f}{2}+\lambda\cdot\frac{b+c}{2},\)

vagyis \(\displaystyle z=(1-\lambda)x+\lambda y\), tehát ekkor \(\displaystyle Z\) is \(\displaystyle \lambda:(1-\lambda)\) arányban osztja az \(\displaystyle XY\) szakaszt. Ezért a keresett mértani hely éppen az \(\displaystyle XY\) szakasz.


Statistics:

76 students sent a solution.
3 points:51 students.
2 points:8 students.
1 point:7 students.
0 point:9 students.
Unfair, not evaluated:1 solution.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley