KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem B. 4259. (March 2010)

B. 4259. A circle passes through vertices B and C of a triangle ABC. It intersects side AB at D and side AC at E. The median AF intersects DE at G. Prove that \frac{GD}{GE} =
\frac{AC^2}{AB^2}.

(4 pont)

Deadline expired on 12 April 2010.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Mivel a \(\displaystyle BCED\) négyszög húrnégyszög, a szokásos jelölésekkel

\(\displaystyle AED\sphericalangle=180^\circ-CED\sphericalangle=CBD\sphericalangle=\beta,\)

és hasonlóképpen \(\displaystyle ADE\sphericalangle=\gamma\), vagyis az \(\displaystyle AED\) háromszög hasonló az \(\displaystyle ABC\) háromszöghöz. Húzzunk az \(\displaystyle F\) ponton át párhuzamost a \(\displaystyle DE\) egyenessel, ennek az \(\displaystyle AB\), illetve \(\displaystyle AC\) félegyenessel való metszéspontját jelölje \(\displaystyle D'\) és \(\displaystyle E'\). Ekkor az \(\displaystyle AE'D'\) háromszög hasonló az \(\displaystyle AED\) háromszöghöz, és \(\displaystyle GD:GE=FD':FE'\).

Ha az \(\displaystyle AB\) és \(\displaystyle AC\) oldalak felezőpontját \(\displaystyle D^*\), illetve \(\displaystyle E^*\) jelöli, akkor \(\displaystyle FD^*=AC/2\), \(\displaystyle FE^*=AB/2\), vagyis az \(\displaystyle ABC\), \(\displaystyle AED\), \(\displaystyle AE'D'\), \(\displaystyle E^*E'F\) és \(\displaystyle D^*FD'\) háromszögek hasonlósága alapján

\(\displaystyle \frac{GD}{GE}=\frac{FD'}{FE'}=\frac{FD'}{FD^*}\cdot\frac{FD^*}{FE^*}\cdot \frac{FE^*}{FE'}=\frac{BC}{AB}\cdot\frac{AC}{AB}\cdot\frac{CA}{CB}= \frac{AC^2}{AB^2}.\)


Statistics:

59 students sent a solution.
4 points:53 students.
3 points:2 students.
2 points:1 student.
1 point:1 student.
Unfair, not evaluated:2 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley