KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4263. Solve the following simultaneous equations: x3+4y=y3+16x, \frac{1+y^{2}}{1+x^{2}}
=5.

(4 points)

Deadline expired on 10 May 2010.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. A második egyenlet szerint \(\displaystyle y^2=5x^2+4\). Ha az első egyenletet \(\displaystyle y(y^2-4)=x(x^2-16)\) alakra hozzuk, akkor behelyettesítés után az \(\displaystyle 5x^2y=x(x^2-16)\) egyenletre jutunk. Az \(\displaystyle x=0\) esetben \(\displaystyle y^2=4\), vagyis \(\displaystyle y=\pm 2\), ellenkező esetben az

\(\displaystyle y=\frac{x^2-16}{5x},\qquad 5x^2+4=y^2=\left(\frac{x^2-16}{5x}\right)^2\)

összefüggésre jutunk, ahonnan \(\displaystyle (x^2-16)^2=25x^2(5x^2+4)\). Az \(\displaystyle x^2=t\) helyettesítéssel ez a \(\displaystyle 124t^2+132t-256=0\) másodfokú egyenletre vezet, melynek egyik megoldása \(\displaystyle t=1\), a másik viszont negatív, ezért nem jöhet szóba. Innen \(\displaystyle x=\pm 1\), \(\displaystyle y=\pm 3\) adódik. Ellenőrzés után kiderül, hogy az egyenletrendszert csak a következő négy \(\displaystyle (x;y)\) számpár elégíti ki: \(\displaystyle (0;2)\), \(\displaystyle (0;-2)\), \(\displaystyle (1;-3)\), \(\displaystyle (-1;3)\).


Statistics on problem B. 4263.
99 students sent a solution.
4 points:61 students.
3 points:17 students.
2 points:15 students.
1 point:4 students.
0 point:2 students.


  • Problems in Mathematics of KöMaL, April 2010

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley