KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4285. The terms of a sequence are positive integers. The first two terms are 1 and 2. No term of the sequence is equal to the sum of two different terms. Prove that for any natural number k, the number of terms less than k is at most \frac{k}{3} +2.

(3 points)

Deadline expired on 11 October 2010.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. A 3 nem eleme a sorozatnak, a 4 és az 5 számok közül pedig legfeljebb egy lehet a sorozat eleme. Ezért \(\displaystyle k\le 5\) esetén az állítás igaz. Tegyük fel, hogy \(\displaystyle k\ge 6\) és \(\displaystyle k\) kisebb értékeire az állítás már igazolást nyert. Ekkor a sorozat \(\displaystyle (k-3)\)-nál kisebb elemeinek száma legfeljebb \(\displaystyle \frac{k-3}{3} +2=\frac{k}{3} +1\). Továbbá \(\displaystyle k-3>2\) miatt a \(\displaystyle k-3, k-2, k-1\) számok közül legfeljebb egy lehet eleme a sorozatnak, így a sorozat \(\displaystyle k\)-nál kisebb elemeinek száma legfeljebb \(\displaystyle \frac{k}{3} +2\). A teljes indukció elve alapján az állítás minden \(\displaystyle k\) természetes szám esetén érvényes.


Statistics on problem B. 4285.
178 students sent a solution.
3 points:65 students.
2 points:44 students.
1 point:21 students.
0 point:48 students.


  • Problems in Mathematics of KöMaL, September 2010

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley