KöMaL - Középiskolai Matematikai és Fizikai Lapok
English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

 

apehman

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4296. Let ma and mb denote the lengths of the altitudes drawn to sides a and b of a triangle. Show that if a>b then a2010+ma2010\geb2010+mb2010.

(4 points)

Deadline expired on 10 November 2010.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Nyilván \(\displaystyle a\ge m_b\) és \(\displaystyle b\ge m_a\), ahol egyenlőség pontosan akkor teljesül, ha az \(\displaystyle a\) és \(\displaystyle b\) oldalak egymásra merőlegesek. Ezen kívül \(\displaystyle am_a=bm_b=2t\), ahol \(\displaystyle t\) a háromszög területe. Legyen \(\displaystyle a^{2010}=x_a\), \(\displaystyle b^{2010}=x_b\), \(\displaystyle m_a^{2010}=y_a\), \(\displaystyle m_b^{2010}=y_b\); ekkor a fentiek szerint \(\displaystyle x_a>x_b\ge y_a\), valamint \(\displaystyle x_ay_a=x_by_b=c=(2t)^{2010}\). A bizonyítandó

\(\displaystyle x_a+\frac{c}{x_a}\ge x_b+\frac{c}{x_b}\)

egyenlőtlenség ekvivalens az

\(\displaystyle x_a^2x_b+cx_b\ge x_b^2x_a+cx_a\)

egyenlőtlenséggel, amit \(\displaystyle (x_a-x_b)(x_ax_b-c)\ge 0\) alakra hozhatunk. Itt az első tényező pozitív, a második tényező pedig \(\displaystyle x_ax_b\ge x_ay_a=c\) miatt nemnegatív. Ezzel az állítást bebizonyítottuk, egyenlőség pedig pontosan akkor áll fenn, ha \(\displaystyle x_b=y_a\), vagyis ha az \(\displaystyle a\) és \(\displaystyle b\) oldalak egymásra merőlegesek.


Statistics on problem B. 4296.
121 students sent a solution.
4 points:89 students.
3 points:8 students.
2 points:2 students.
1 point:11 students.
0 point:8 students.
Unfair, not evaluated:3 solutions.


  • Problems in Mathematics of KöMaL, October 2010

  • Támogatóink:   Ericsson   Google   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma  
    Oktatáskutató és Fejlesztő Intézet   Nemzeti Tehetség Program     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley