KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4304. Is there a positive integer k, such that \big(\dots\big((4\underbrace{!)!\big)!\dots\big)!}_{k} >
\big(\dots\big((3\underbrace{!)!\big)!\dots\big)!}_{k+1}?

(3 points)

Deadline expired on 10 December 2010.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Nincsen ilyen \(\displaystyle k\) szám. Legyen \(\displaystyle a_k=(\dots((3\underbrace{!)!)!\dots)!}_{k}\), \(\displaystyle b_k=(\dots((4\underbrace{!)!)!\dots)!}_{k}\). A \(\displaystyle k=1\) esetben \(\displaystyle a_2=(3!)!=6!>4!=b_1\). Ha pedig valamely \(\displaystyle k\) pozitív egészre \(\displaystyle a_{k+1}>b_k\) pozitív egészek, akkor \(\displaystyle a_{k+2}=a_{k+1}!>b_k!=b_{k+1}\) is teljesül. Így a teljes indukció elve szerint minden \(\displaystyle k\) pozitív egészre

\(\displaystyle (\dots((3\underbrace{!)!)!\dots)!}_{k+1}> (\dots((4\underbrace{!)!)!\dots)!}_{k}\ .\)


Statistics on problem B. 4304.
209 students sent a solution.
3 points:176 students.
2 points:25 students.
0 point:1 student.
Unfair, not evaluated:7 solutions.


  • Problems in Mathematics of KöMaL, November 2010

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley