KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4312. In a company, everyone knows 5 other people. (Acquaintances are mutual.) Two members of the company are appointed captains. The captains take turns selecting members for their teams, until everyone is selected. Prove that at the end of the selection process there are the same number of acquaintances within each team.

Suggested by T. Hubai and Z. Király

(3 points)

Deadline expired on 10 January 2011.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Ha a társaságban \(\displaystyle n\) ember van, akkor ők összesen \(\displaystyle 5n\) embert ismernek. Mivel minden egyes ismeretség két embert feltételez, ez a szám megegyezik a kölcsönös ismeretségek számának kétszeresével, vagyis \(\displaystyle n=2k\) páros szám. Ez azt jelenti, hogy a választás végén mindkét csapatban ugyanannyi (\(\displaystyle k\)) tag lesz. Mindkét csapatra igaz tehát, hogy tagjai összesen \(\displaystyle 5k\) embert ismernek. Ha a két csapat között összesen \(\displaystyle m\) kölcsönös ismeretség áll fenn, akkor gondolatmenetünk szerint mindkét csapaton belül

\(\displaystyle \frac{5k-m}{2}\)

lesz az ismeretségek száma.


Statistics on problem B. 4312.
112 students sent a solution.
3 points:77 students.
2 points:25 students.
1 point:5 students.
0 point:2 students.
Unfair, not evaluated:3 solutions.


  • Problems in Mathematics of KöMaL, December 2010

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley