KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4343. Let a and b denote positive numbers such that a3+b3=1. Show that a2+ab+b2-a-b>0.

(Suggested by J. Pataki, Budapest)

(4 points)

Deadline expired on 11 April 2011.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. A feltételek miatt \(\displaystyle a\) és \(\displaystyle b\) 1-nél kisebb pozitív számok. Hozzuk az egyenlőtlenséget \(\displaystyle b^2>(1-a)(a+b)\) alakra. Ez ekvivalens a \(\displaystyle b^3>(1-a)(a+b)b\) egyenlőtlenséggel. Felhasználva, hogy \(\displaystyle b^3=1-a^3\), a pozitív \(\displaystyle 1-a\) mennyiséggel leosztva az eredetivel ekvivalens \(\displaystyle a^2+a+1>(a+b)b\) egyenlőtlenséget kapjuk. Ez pedig nyilván teljesül, hiszen \(\displaystyle a^2+a>a>ab\) és \(\displaystyle 1>b^2\).


Statistics on problem B. 4343.
84 students sent a solution.
4 points:55 students.
3 points:11 students.
2 points:3 students.
1 point:6 students.
0 point:8 students.
Unfair, not evaluated:1 solution.


  • Problems in Mathematics of KöMaL, March 2011

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley