KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Conditions
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years

 

 

Order KöMaL!

Competitions Portal

B. 4365. Find all positive integers n such that 2n-1 and 2n+2-1 are both primes, and 2n+1-1 is not divisible by 7.

(Suggested by S. Kiss, Budapest)

(3 points)

Deadline expired on 10 June 2011.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Ha &tex;\displaystyle k=1&xet;, akkor &tex;\displaystyle 2^k-1=1&xet; nem prím. Ha &tex;\displaystyle k=ab&xet;, ahol &tex;\displaystyle a,b&xet; 1-nél nagyobb egész számok, akkor &tex;\displaystyle 2^a-1>1&xet; valódi osztója a &tex;\displaystyle 2^k-1&xet; számnak. Ezért ha &tex;\displaystyle 2^n-1&xet; és &tex;\displaystyle 2^{n+2}-1&xet; is prím, akkor &tex;\displaystyle n&xet; és &tex;\displaystyle n+2&xet; is prím kell legyen. Mármost ha &tex;\displaystyle n>3&xet;, akkor &tex;\displaystyle n&xet; páratlan, tehát &tex;\displaystyle n+1&xet; páros. Továbbásem &tex;\displaystyle n&xet;, sem &tex;\displaystyle n+2&xet; nem osztható 3-mal, tehát &tex;\displaystyle n+1&xet; osztható 3-mal, így 6-tal is. Ekkor viszont &tex;\displaystyle 2^6-1\mid 2^{n+1}-1&xet; miatt &tex;\displaystyle 2^{n+1}-1&xet; osztható &tex;\displaystyle 7&xet;-tel. Mivel &tex;\displaystyle n=2&xet; esetén &tex;\displaystyle n+2&xet; nem prím, az egyetlen lehetőség &tex;\displaystyle n=3&xet;, ami meg is felel a feltételeknek.


Statistics on problem B. 4365.
78 students sent a solution.
3 points:56 students.
2 points:15 students.
1 point:5 students.
0 point:1 student.
Unfair, not evaluated:1 solution.


  • Problems in Mathematics of KöMaL, May 2011

  • Our web pages are supported by: Ericsson   Google   Emberi ErĹ‘forrás TámogatáskezelĹ‘   Emberi ErĹ‘források MinisztĂ©riuma   OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   Nemzeti TehetsĂ©g Program     Nemzeti
Kulturális Alap   ELTE