Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

A B. 4365. feladat (2011. május)

B. 4365. Keressük meg az összes olyan n pozitív egész számot, amelyre 2n-1 és 2n+2-1 is prím, továbbá 2n+1-1 nem osztható 7-tel.

Javasolta: Kiss Sándor (Budapest)

(3 pont)

A beküldési határidő 2011. június 10-én LEJÁRT.


Megoldás. Ha \(\displaystyle k=1\), akkor \(\displaystyle 2^k-1=1\) nem prím. Ha \(\displaystyle k=ab\), ahol \(\displaystyle a,b\) 1-nél nagyobb egész számok, akkor \(\displaystyle 2^a-1>1\) valódi osztója a \(\displaystyle 2^k-1\) számnak. Ezért ha \(\displaystyle 2^n-1\) és \(\displaystyle 2^{n+2}-1\) is prím, akkor \(\displaystyle n\) és \(\displaystyle n+2\) is prím kell legyen. Mármost ha \(\displaystyle n>3\), akkor \(\displaystyle n\) páratlan, tehát \(\displaystyle n+1\) páros. Továbbásem \(\displaystyle n\), sem \(\displaystyle n+2\) nem osztható 3-mal, tehát \(\displaystyle n+1\) osztható 3-mal, így 6-tal is. Ekkor viszont \(\displaystyle 2^6-1\mid 2^{n+1}-1\) miatt \(\displaystyle 2^{n+1}-1\) osztható \(\displaystyle 7\)-tel. Mivel \(\displaystyle n=2\) esetén \(\displaystyle n+2\) nem prím, az egyetlen lehetőség \(\displaystyle n=3\), ami meg is felel a feltételeknek.


Statisztika:

78 dolgozat érkezett.
3 pontot kapott:56 versenyző.
2 pontot kapott:15 versenyző.
1 pontot kapott:5 versenyző.
0 pontot kapott:1 versenyző.
Nem versenyszerű:1 dolgozat.

A KöMaL 2011. májusi matematika feladatai