KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

MBUTTONS

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4375. Let a and b be the legs of a right-angled triangle, and let m be the height drawn to the hypotenuse c. Which line segment is longer, a+b or m+c?

Suggested by P. Székely, Budapest

(3 points)

Deadline expired on 10 October 2011.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. A háromszög területét \(\displaystyle {1 \over2} ab\) és \(\displaystyle {1 \over 2}cm\) alakban is felírhatjuk. Így a Pithagorasz-tétel alapján

\(\displaystyle (a+b)^2=a^2+b^2+2ab=c^2+2cm<c^2+2cm+m^2=(c+m)^2,\)

vagyis \(\displaystyle a+b<m+c\).


Statistics on problem B. 4375.
272 students sent a solution.
3 points:237 students.
2 points:6 students.
1 point:10 students.
0 point:10 students.
Unfair, not evaluated:9 solutions.


  • Problems in Mathematics of KöMaL, September 2011

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley