KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4376. Prove that if x, y are non-negative numbers then

x^4 + y^3 + x^2 + y + 1 > \frac{9}{2}xy .

Suggested by J. Szoldatics, Dunakeszi

(4 points)

Deadline expired on 10 October 2011.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Tetszőleges \(\displaystyle a,b\) valós számokra \(\displaystyle (a-b)^2\ge 0\) miatt teljesül \(\displaystyle a^2+b^2\ge 2ab\). Ezért \(\displaystyle x^4+1\ge 2x^2\), továbbáha \(\displaystyle y\) nemnegatív, akkor \(\displaystyle y^3+y=y(y^2+1)\ge y(2y)=2y^2\). Mindezek alapján

\(\displaystyle x^4 + y^3 + x^2 + y + 1\ge 3x^2+2y^2\ge 2(\sqrt{3}x)(\sqrt{2}y)> \frac{9}{2}xy,\)

hiszen \(\displaystyle xy\) nemnegatív és \(\displaystyle 2\sqrt{6}>9/2\).


Statistics on problem B. 4376.
93 students sent a solution.
4 points:70 students.
3 points:7 students.
2 points:1 student.
1 point:5 students.
0 point:8 students.
Unfair, not evaluated:2 solutions.


  • Problems in Mathematics of KöMaL, September 2011

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley