KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4382. Let x be an integer. Prove that if \frac{4x+1-\sqrt{8x+1}}2 is an integer then it is a square number.

(3 points)

Deadline expired on 10 November 2011.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Ha a kifejezés értéke egész, akkor \(\displaystyle \sqrt{8x+1}\) is egész szám, vagyis a páratlan \(\displaystyle 8x+1\) szám négyzetszám, meghozzá szükségképpen egy páratlan szám négyzete. Legyen tehát \(\displaystyle 8x+1=(2m+1)^2\), ahol \(\displaystyle m\) nemnegatív egész szám. Ekkor

\(\displaystyle \frac{4x+1-\sqrt{8x+1}}2=\frac{(2m^2+2m+1)-(2m+1)}{2}=m^2\)

valóban négyzetszám.


Statistics on problem B. 4382.
231 students sent a solution.
3 points:167 students.
2 points:46 students.
1 point:7 students.
0 point:8 students.
Unfair, not evaluated:3 solutions.


  • Problems in Mathematics of KöMaL, October 2011

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley