KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4421. Let t denote a fixed integer. Show that for every odd prime number p, there exists a positive integer n, such that (3-7t)2n+(18t-9)3n+(6-10t)4n is divisible by p.

(Suggested by K. Kalina, Budapest)

(5 points)

Deadline expired on 10 February 2012.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. A \(\displaystyle p=3\) esetben nyilván \(\displaystyle n=1\) megfelelő lesz. Ha \(\displaystyle p\ge 5\) akkor a kis Fermat-tétel szerint \(\displaystyle 2^{p-1}, 3^{p-1}\) és \(\displaystyle 4^{p-1}\) is 1 maradékot ad \(\displaystyle p\)-vel osztva, vagyis

\(\displaystyle 2^{p-1}=Ap+1, \quad 3^{p-1}=Bp+1, \quad 4^{p-1}=Cp+1\)

írható alkalmas \(\displaystyle A,B,C\) egész számokkal. Ekkor \(\displaystyle n=p-2\) esetén

\(\displaystyle (3-7t)2^n+(18t-9)3^n+(6-10t)4^n= \frac{3-7t}{2}2^{p-1}+\frac{18t-9}{3}3^{p-1}+\frac{6-10t}{4}4^{p-1}=\)

\(\displaystyle =\frac{3-7t}{2}Ap+\frac{18t-9}{3}Bp+\frac{6-10t}{4}Cp= \frac{\left(6A(3-7t)+4B(18t-9)+3C(6-10t)\right)p}{12}.\)

Ez az egész szám nyilván osztható \(\displaystyle p\)-vel.


Statistics on problem B. 4421.
15 students sent a solution.
5 points:Ágoston Tamás, Barna István, Di Giovanni Márk, Fehér Zsombor, Gyarmati Máté, Janzer Olivér, Kiss 902 Melinda Flóra, Maga Balázs, Mester Márton, Nagy Róbert, Schultz Vera Magdolna, Strenner Péter, Szabó 789 Barnabás.
3 points:1 student.
2 points:1 student.


  • Problems in Mathematics of KöMaL, January 2012

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley