KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4433. Solve the equation (1+x)8+(1+x2)4=82x4.

(3 points)

Deadline expired on 10 April 2012.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. A zárójeleket kibontva, átrendezés után a

\(\displaystyle 2x^8+8x^7+32x^6+56x^5-6x^4+56x^3+32x^2+8x+2=0\)

egyenlethez jutunk. Mivel \(\displaystyle x=0\) nem megoldása az egyenletnek, az ekvivalens az

\(\displaystyle \left(x^4+\frac{1}{x^4}\right)+ 4\left(x^3+\frac{1}{x^3}\right)+ 16\left(x^2+\frac{1}{x^2}\right)+ 28\left(x+\frac{1}{x}\right)-3=0\)

egyenlettel. A \(\displaystyle y=x+1/x\) helyettesítéssel ezt az

\(\displaystyle y^4+4y^3+12y^2+16y-33=0\)

alakra hozhatjuk. Szorzattá alakítva az egyenlet az

\(\displaystyle (y-1)(y+3)(y^2+2y+11)=0\)

alakot ölti. Itt \(\displaystyle y^2+2y+11=(y+1)^2+10>0\), tehát innen \(\displaystyle y=1\) vagy \(\displaystyle y=-3\) adódik. Mivel az \(\displaystyle x+1/x=1\) egyenletnek nincsen megoldása a valós számok körében, az eredeti egyenlet ekvivalens az \(\displaystyle x+1/x=-3\) egyenlettel, melynek megoldása

\(\displaystyle x=\frac{-3\pm\sqrt{5}}{2}.\)


Statistics on problem B. 4433.
103 students sent a solution.
3 points:80 students.
2 points:12 students.
1 point:1 student.
0 point:10 students.


  • Problems in Mathematics of KöMaL, March 2012

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley