KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4450. AB and C are three distinct given points lying on the line e in this order. What is the locus of the points P for which the inscribed circle of triangle ACP touches line e at B?

(4 points)

Deadline expired on 10 May 2012.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Az ACP háromszögről pontosan akkor beszélhetünk, ha P nem illeszkedik az e egyenesre; ezt feltesszük tehát a továbbiakban. Érintse az ACP háromszög beírt köre az AC,CP,PA oldalakat rendre az X,Y,Z pontokban. Az érintőszakaszok egyenlősége miatt AX-CX=AZ-CY=(AZ+ZP)-(CY+YP)=AP-CP. Az AC szakasz egy X pontjára AX-CX=AB-CB akkor és csak akkor teljesül, ha X=B. Ezért az ACP háromszög beírt köre pontosan akkor érinti az e egyenest a B pontban, ha AP-CP=AB-CB. Ezen feltételt teljesítő pontok mértani helye az AC szakasz felező merőlegese, amennyiben B az AC szakasz felezőpontja, egyébként pedig egy hiperbolaág, mely az e egyenest B-ben metszi. A keresett mértani helyet úgy kapjuk, hogy a hiperbolaágból (vagy felező merőlegesből) elhagyjuk annak e-vel közös részét, vagyis a B pontot.


Statistics on problem B. 4450.
47 students sent a solution.
4 points:Bingler Arnold, Bősze Zsófia, Di Giovanni Márk, Fonyó Viktória, Forrás Bence, Janzer Barnabás, Janzer Olivér, Kabos Eszter, Maga Balázs, Mester Márton, Nagy Róbert, Nagy-György Pál, Sagmeister Ádám, Szabó 789 Barnabás, Szabó 928 Attila, Viharos Andor, Zilahi Tamás.
3 points:Ágoston Péter, Ágoston Tamás, Böszörményi Borbála, Fehér Zsombor, Gyarmati Máté, Havasi 0 Márton, Herczeg József, Homonnay Bálint, Katona Dániel, Kecskés Boglárka, Kiss 902 Melinda Flóra, Mócsy Miklós, Nagy Anna Noémi, Nemes György, Ódor Gergely, Rácz Kristóf, Schwarcz Tamás, Tossenberger Tamás, Zahemszky Péter.
2 points:7 students.
1 point:3 students.
0 point:1 student.


  • Problems in Mathematics of KöMaL, April 2012

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley