KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem B. 4513. (February 2013)

B. 4513. The radius of the circumscribed circle of an isosceles triangle of unit base is also unity. The diameter parallel to the base of the triangle cuts off a smaller triangle. Find the exact lengths of the base and legs of the smaller triangle.

Suggested by A. Balga, Budapest

(3 pont)

Deadline expired on 11 March 2013.


Sorry, the solution is available only in Hungarian. Google translation

Megoldási ötlet: Számítsuk ki a szögeket.

 

Megoldásvázlat. Legyen a háromszög ABC, az alapja c, a körülírt kör középontja O. Ha az AB egyenes elválasztja egymástól az O és C pontokat, akkor a körülírt kör AB-vel párhuzamos átmérője nem metszi az ABC háromszög oldalait, így ez az eset nem lehetséges (baloldali ábra). Az O és a C pontnak az AB egyenes ugyanazon az oldalán kell lennie, a jobboldali ábra szerint. Legyen a levágott háromszög DEC. Az AB oldal felezőpontját jelöljük F-fel. A szimmetria miatt az O pont felezi a DE szakaszt.

A feltétel szerint AB=OA=OB=OC=1. Az ABO háromszög szabályos, mert mindegyik oldala egységnyi; a szögei tehát 60 fokosak. Az ACO egyenlő szárú háromszögben AOC\sphericalangle=180^\circ-FOA\sphericalangle=150^\circ, így CAO\sphericalangle=15^\circ. Mivel AB||DE, azért CDE\sphericalangle=CAB\sphericalangle=75^\circ, és ugyanígy DEC\angle=75o.

Ismeretes, hogy a 75o szögfüggvényei a következők (ezeket például az addíciós képletekből, a 45o és 30o szögfüggvényeiből számíthatjuk ki):


\sin 75^\circ=\frac{\sqrt3+1}{2\sqrt2}, \qquad
\cos 75^\circ=\frac{\sqrt3-1}{2\sqrt2}, \qquad
\tg 75^\circ=2+\sqrt3, \qquad
\ctg 75^\circ=2-\sqrt3.

A CDO és CEO derékszögű háromszögekben CO=1, ezért


DE = 2\cdot DO = 2\cdot \big(CO\cdot\ctg 75^\circ\big) = 2\cdot \ctg
75^\circ = 2\cdot\big(2-\sqrt3\big) = 4-2\sqrt3,

és


CD = CE = \frac{CO}{\sin 75^\circ} = \frac1{\sin 75^\circ} =
\frac{2\sqrt2}{\sqrt3+1} =
\frac{2\sqrt2\big(\sqrt3-1\big)}{\big(\sqrt3+1\big)\big(\sqrt3-1\big)}
= \sqrt6-\sqrt2.

Megjegyzés. A CD és a DE oldalak hosszát szögfüggvények nélkül is kiszámíthatjuk az AFO és AFC hároszögekre feírt a Pithagorasz-tételből, valamint az ABC és DEC háromszögek hasonlóságából.


Statistics:

189 students sent a solution.
3 points:125 students.
2 points:56 students.
1 point:7 students.
0 point:1 student.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley