KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4514. Solve the equation 36a4+b4=9c4+4d4 on the set of integers.

Suggested by Gy. Orosz, Budapest

(4 points)

Deadline expired on 11 March 2013.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldási ötlet: Vizsgáljuk az 5-ös maradékot.

 

Megoldás. Az (1)-nek triviális megoldása a (0,0,0,0). Megmutatjuk, hogy más megoldás nincs.

Tegyük fel, hogy létezik olyan (a,b,c,d) megoldás, amelyben a,b,c,d valamelyike 0-tól különböző (nevezzük az ilyeneket "nemtriviális" megoldásoknak), és vegyünk a nemtriviális megoldások közül egy olyat, amelyben |a|+|b|+|c|+|d| minimális.

Vizsgáljuk (1)-ben a két oldal maradékát 5-tel osztva. Tetszőleges x egészre, ha x\equiv\pm1\pmod5, akkor x^4\equiv(\pm1)^4=1\pmod5, ha pedig x\equiv\pm2\pmod5, akkor x^4\equiv(\pm2)^4=16\equiv1\pmod5. Ha pedig x\equiv0\pmod5, akkor természetesen x^4\equiv0\pmod5.

Ezért (1) baloldalán a 36a4+b4=5.7a4+(a4+b4) szám 5-ös maradéka 0, 1 vagy 2, és a 0 csak akkor lehetséges, ha a és b is osztható 5-tel. Hasonlóan, (1) jobboldalán a 9c4+4d4=5(2c4+d4)-(c4+d4) 5-ös maradéka 0, -1 vagy -2, és a 0 csak akkor lehetséges, ha c és d is osztható 5-tel. A {0,1,2} és {0,-1,-2} halmazoknak egyetlen közös eleme a 0, tehát (1) csak úgy teljesülhet, ha mindkét oldal, sőt, abcd mindegyike osztató 5-tel.

Legyen a1=a/5, b1=b/5, c1=c/5 és d1=d/5. Ezek mindegyike egész szám, az egyenlet teljesül rájuk, nem mindegyikük 0, tehát (a1,b1,c1,d1) is nemtriviális megoldása az egyenletnek. Viszont |a_1|+|b_1|+|c_1|+|d_1| = \frac15\big(|a|+|b|+|c|+|d|\big) <
|a|+|b|+|c|+|d|, ez pedig ellentmond annak, hogy a lehető legkisebb nemtriviális megoldást választottuk.

Megjegyzés. Az egyenletben szereplő 4-es kitevőkből sejthetjük meg, hogy az 5-ös maradékokat érdemes vizsgálni: a kis Fermat-tétel szerint x^4\equiv 1\pmod5, ha x nem osztható 5-tel.


Statistics on problem B. 4514.
86 students sent a solution.
4 points:Ágoston Péter, Almási Péter, Andó Angelika, Badacsonyi István András, Bajnok Anna, Balogh Tamás, Bingler Arnold, Bősze Zsuzsanna, Csernák Tamás, Csurgai-Horváth Bálint, Di Giovanni Márk, Emri Tamás, Fekete Panna, Fellner Máté, Fonyó Viktória, Forrás Bence, Havasi 0 Márton, Herczeg József, Janzer Barnabás, Janzer Olivér, Kúsz Ágnes, Maga Balázs, Makk László, Mándoki Sára, Mattia Tiso, Mezősi Máté, Mócsy Miklós, Nagy Bence Kristóf, Nagy Róbert, Nagy-György Pál, Petrényi Márk, Qian Lívia, Schwarcz Tamás, Seress Dániel, Somogyvári Kristóf, Stein Ármin, Szabó 789 Barnabás, Tossenberger Tamás, Török Tímea, Török Zsombor Áron, Venczel Tünde, Weisz Ambrus, Wiandt Péter, Williams Kada, Zilahi Tamás, Zsakó Ágnes.
3 points:14 students.
2 points:12 students.
1 point:1 student.
0 point:13 students.


  • Problems in Mathematics of KöMaL, February 2013

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley