KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

MBUTTONS

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4534. M and N are points on the longest side, AB of a triangle ABC, such that BM=BC and AN=AC. The parallel drawn through point M to the side BC intersects side AC at P, and the parallel drawn through point N to the side AC intersects side BC at Q. Prove that CP=CQ.

(Kvant)

(3 points)

Deadline expired on 10 May 2013.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldási ötlet: Párhuzamos szelők tétele.

Megoldás. Legyenek a háromszög oldalai BC=a, CA=b és AB=c. A párhuzamos szelők tételét alkamazva, \frac{CP}{AC} = \frac{BM}{AB}, amiből


CP = \frac{BM\cdot AC}{AB} = \frac{BC\cdot AC}{AB} = \frac{ab}{c}.

Hasonlóan kapjuk, hogy \frac{CQ}{CB} = \frac{AN}{AB}, és


CQ = \frac{AN\cdot CB}{AB} = \frac{AC\cdot CB}{AB} = \frac{ba}{c}.

Tehát CP=CQ=\frac{ab}c.


Statistics on problem B. 4534.
100 students sent a solution.
3 points:94 students.
2 points:1 student.
1 point:2 students.
0 point:3 students.


  • Problems in Mathematics of KöMaL, April 2013

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley